Studies of the Cyclic Amidoacetal Carbamate Moiety of the Maytansinoids ${ }^{1}$

Glenn Gormley, Jr., Y. Y. Chan, and Josef Fried*
Department of Chemistry, The University of Chicago, Chicago, Illinois 60637

Received September 21, 1979

Abstract

A synthesis of cyclic urethane amidoacetals of the type present in the maytansinoid ansa macrolides is reported both to serve as a synthetic model and to explore the chemistry of the hydroxylated intermediates of structures 5 and 6. These compounds are prepared by aldol cyclization of the open-chain amidoacetal aldehyde 4e. Compound 5 is the product of kinetic control, which rearranges to the stable isomeric end products 6 and 7 , the latter of which possesses a five-membered urethane ring. 'The elucidation of structure, stereochemistry, and conformation of these substances is described. The removal of the secondary hydroxyl group of 5 to form 17 a is accomplished in three steps.

The ansa macrolide maytansine, first described by

maytansine
Kupchan et al., ${ }^{2}$ and related substances ${ }^{3}$ have received much attention because of their potent antitumor activity. ${ }^{3}$ Synthetic approaches ${ }^{4}$ to this potentially important class of chemotherapeutic agents have recently culminated in the synthesis by two groups ${ }^{5,6}$ of the maytansinoid (\pm)- N methylmaysenine, which lacks but the 4,5 -epoxide function and the 3 -acyloxy substituent of maytansine.
A synthetic approach to the maytansinoids explored in this laboratory involves closure of the macrocycle via the reaction of an α-keto aldehyde which serves as one of the two termini and a urethane grouping which serves as the other. A model reaction of this type was described in a recent publication from this laboratory, ${ }^{7}$ involving the preparation of the amido acetal 2 by condensation of styrylglyoxal with the urethane 1 , followed by reaction with methanol. Neither of these reactions required the use of an external catalyst. If this facile condensation reaction was to provide a model for the closure of the macrocycle, bond formation between C-8 and C-9 (maytansine numbering) would have to be effected under the mildest possible conditions to form the six-membered urethane ring. Experiments directed toward this goal and a solution to

[^0]
the problem form the subject of this paper. The task turned out to be more complex than anticipated, and further simplification was deemed desirable by deleting the "side chain" composed of carbons 5 and 6 and the attached methyl group.
The immediate objective then was to perform reaction 1. Synthesis of the acyclic precursor 3a was achieved in

90% yield by condensation of 2-acetoxyethyl carbamate ${ }^{8}$ with styrylglyoxal ${ }^{9}$ in ether/chloroform at $25^{\circ} \mathrm{C}$, followed by a brief reaction with 0.003 N HCl in hot methanol. In order to avoid complications when generating the required anion at C-9, the imino nitrogen was methylated in 90% yield with silver oxide and methyl iodide in DMF at $25^{\circ} \mathrm{C}$ to form the N-methylurethane 4a. Removal of the acetyl group with $1 \% \mathrm{KOH}$ in methanol at $25^{\circ} \mathrm{C}$ afforded the alcohol 4b, which formed the starting point for much experimentation aimed at closing the urethane ring. Alkylation reactions involving the tosylate 4 c or the iodide $\mathbf{4 d}$ under a large variety of enolizing conditions, both basic and acidic, were unsuccessful. Success was eventually achieved by an intramolecular aldol reaction via the aldehyde 4 e prepared in 69% yield from the alcohol 4 b by

[^1]a sodium acetate buffered pyridinium chlorochromate oxidation. ${ }^{10}$

$4 \mathrm{a}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{OAc}$
b, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}$
c, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OT}$
d, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{I}$
e, $\mathrm{R}=\mathrm{CHO}$

6, $\mathrm{R}=\mathrm{H}$
$6 \mathrm{a}, \mathrm{R}=\mathrm{Ac}$
$b, R=T s$
$c, R=T f$

5, $R=H$
$5 \mathrm{a}, \mathrm{R}=\mathrm{Ac}$
b, $\mathrm{R}=\mathrm{Ts}$
$\mathrm{c}, \mathrm{R}=\mathrm{Tf}$

$7, \mathrm{R}=\mathrm{OH}$
$7 \mathrm{a}, \mathrm{R}=\mathrm{OAC}$
b, $\mathrm{R}=\mathrm{OMs}$
d, $R=I$
e, $\mathrm{R}=\mathrm{OTHP}$

$$
\begin{aligned}
& \mathrm{g}, \mathrm{R}=\mathrm{R} \mathrm{CH}_{3} \\
& \mathrm{~h}, \mathrm{R}=\mathrm{THP}
\end{aligned}
$$

The intramolecular aldol reaction of $4 \mathbf{e}$ provided an unanticipated outcome leading not only to the desired six-membered urethanes 5 and 6 but giving rise also to the rearrangement product 7 via a subsequent intramolecular acyl migration. Thus, when the reaction was performed in a saturated solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol for 5 min , all three products, 5,6 , and 7 , could be isolated in approximately equal amounts by TLC or column chromatography. The unexpected presence of a five-membered urethane ring in 7 was first inferred from its infrared spectrum which showed a band at $1760 \mathrm{~cm}^{-1}$ in contrast to absorption at $1715 \mathrm{~cm}^{-1}$ for both 5 and 6 . Such absorption maxima are characteristic of five- and six-membered cyclic urethanes, respectively. ${ }^{11}$

Before considering the stereochemistry of the cyclic urethanes, it is instructive to discuss their relative rates of formation and their interconversions. Such information was gained by performing the reaction in $0.005 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol (pH 11.5) at room temperature. Under these conditions the reaction requires 18 to 24 h for completion. Reaction progress was monitored by TLC and occasional workup and isolation of the individual products. The six-membered alcohol $5, \mathrm{mp} 85-86.5^{\circ} \mathrm{C}$, was the first product to appear, followed by the six-membered alcohol 6, mp 195-196 ${ }^{\circ} \mathrm{C}$, and finally the five-membered alcohol 7. Isolation of the products formed after 3.5 h showed 50% $5,22 \% 6,9 \% 7$, and 19% unchanged aldehyde 4 e. On further exposure compound 5 declined at the expense of 6 and 7, until workup after 24 h revealed only $32 \% 6$ and $68 \% 7$. In separate experiments using the same conditions, it was shown that 5 was transformed into 6 (25%) and 7 (75%), and that 6 and 7 remained unchanged even after several days of exposure to the base. It may be concluded from these experiments that 5 is the exclusive product of
(10) Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 2647.
(11) Hall, H. K., Jr.; Zbinden, R. J. Am. Chem. Soc. 1958, 80, 6420.

Scheme I

kinetic control, which by two independent competitive routes, namely reversal of the aldol condensation or intramolecular acyl migration, gives rise to the stable end products of the reaction, 6 and 7 , respectively. These relationships are shown in Scheme I. Workup after ca. 4 h represents the optimum condition for obtaining 5, which turned out to be the intermediate essential for the preparation of the desired deoxyurethane 17a.

We are now in a position to discuss the stereochemistry of the urethanes 5, 6, and 7. The key to the solution of this problem was the elucidation of the structure of the five-membered rearrangement product 7. That 7 possesses a hydroxymethyl group was shown by the following sequence of reactions: The alcohol 7 was converted into

the THP ether $7 \mathrm{e}^{12}$ and the keto group reduced with NaBH_{4} in methanol to furnish a mixture of alcohols 8,

[^2] 3772.
which was converted into the methyl ethers $8 \mathbf{a}$ with sodium hydride and methyl iodide. ${ }^{13}$ These were hydrolyzed to to the parent alcohols 9 with $0.001 \mathrm{M} p-\mathrm{TsOH}$ in methanol and the mixture separated by TLC. Both isomers, A and B, yielded tosylates 9 a , neither of which furnished identifiable products on attempted reduction with either Li AlH_{4} or Superhydride. The two tosylates were therefore converted into the thiomethyl ethers $9 \mathbf{b}^{14}$ with sodium methyl mercaptide in DMF at $0^{\circ} \mathrm{C}$ and the resulting products desulfurized with Raney nickel in acetone ${ }^{15}$ to form the corresponding C-methyl-substituted urethanes 9c. The presence of a C-methyl group in these compounds was readily apparent from the 3-proton doublet at $\delta 1.50$ $(J=6 \mathrm{~Hz})$ and the quartet at $\delta 4.05$ for the $\mathrm{C}-4$ methine proton. Additional evidence for the presence of a hydroxymethyl substituent in 9 was obtained by oxidation with pyridinium chlorochromate to the aldehyde 10. Both 9 and 9 c could be hydrolyzed with 0.2 N HCl in THF/ $\mathrm{H}_{2} \mathrm{O}^{2}$ to the hemiacetals 11 and 11a.

The cis relationship of the hydroxymethyl and cinnamoyl substituents was inferred from the isolation of the hemiketal 7f, whose proton NMR spectrum in CDCl_{3} exhibits signals for the two vinyl protons at $\delta 6.97$ and 6.15 , approximately 1 ppm upfield from those in all the α, β unsaturated ketones and near the chemical shifts that these protons exhibit in the corresponding allylic alcohols. Two diastereomers in a 9:1 ratio appeared likely from the presence of satellite doublets for these vinyl protons. Such a cyclic form was also demonstrated by formation of the ketal 7 g by treatment of 7 with dilute HCl in methanol. A similar cyclization took place when the mesylate $\mathbf{7 b}$, tosylate 7c, or iodide 7d, prepared according to stanclard methods, were reduced with $\mathrm{LiEt}_{3} \mathrm{BH}^{16}$ In this case the cyclic ether 12 was formed by displacement of the mesylate, tosylate, or iodide by the hydroxylate anion generated in the reduction.

On the basis of the stereochemistry of the rearranged five-membered urethane 7 , the structure of the isomeric six-membered urethanes 5 and 6 can now be derived. According to Scheme I, 7 is formed exclusively from the lower melting faster-moving isomer 5 via the tetrahedral intermediate T by a process which does not involve its two asymmetric centers. In compound 5 the cinnamoyl and hydroxyl substituents must therefore be trans to each other, while in the higher melting isomer 6 they are in a cis relationship. The fully resolved $270-\mathrm{MHz}$ NMR spectra of the O-acetyl derivatives of 5 and 6 provide interesting information regarding the conformation of these two compounds. Thus, the methine proton at $\mathrm{C}-5$ in the trans compound 5 a appears as a doublet of doublets coupled to the methylene protons at $\mathrm{C}-4$ with $J=3.0$ and 6.0 Hz . In contrast, the coupling constants for the methine proton in the cis compound 6 a are 6.9 and 10.5 Hz . Very similar values were obtained for the coupling constants of the acyl derivatives $5 \mathbf{b}$ and $5 \mathbf{c}$ and $6 \mathbf{b}$ and $6 \mathbf{c}$, respectively. ${ }^{17}$ These data are consistent with a half-chair conformation of the ring, also present in maytansine, ${ }^{18}$ with the $\mathrm{C}-5$ substituent in the trans compounds in the axial position, and in the cis compounds in the equatorial position. It furthermore

[^3]follows that the cinnamoyl group must prefer to be pseudoaxial in both series. The unusual stability of the trans isomer in such a diaxial arrangement persists in more polar solvents such as methanol and dimethyl sulfoxide, since no change in the coupling constants is observed in the proton NMR spectra in these solvents. It is hoped that X-ray crystallographic data now being collected may provide a more precise picture of the conformation of these substances, at least in the solid state. The distinct conformational preference in these compounds serves to explain the facile rearrangement of 5 , in which the axial hydroxyl group is conveniently disposed to form the nor-bornane-like skeleton of the tetrahedral intermediate T . Apparently, conformational inversion of 6 to achieve axiality for the hydroxyl group is energetically sufficiently unfavorable to prevent rearrangement under the conditions employed. Similarly, the facile formation of the trans isomer 5 in the aldol reaction and the ready reversal of that reaction, in contrast to the stability of the cis isomer, can be related to the close to antiperiplanar arrangement of the hydroxyl and cinnamoyl groups in the former, favored in the transition state.
Maytansine does not possess a hydroxyl group in the urethane ring. It became necessary, therefore, to effect its removal. It should be noted, however, that synthetic variants of this antitumor agent may well benefit from its presence, either free or substituted, and a detailed understanding of the chemistry of these hydroxylated urethanes may turn out to be of more than passing interest. The more abundant trans isomer 5 was examined first. A plan utilizing the desulfurization technique, which had proved successful in the deoxygenation of the five-membered urethane 7, proceeded as follows. The tosylate 5b was reduced with NaBH_{4} in methanol at $0^{\circ} \mathrm{C}$ to a $1: 1$ mixture of allylic alcohols 13 which were separated by TLC. It was necessary to terminate the reaction after 11

$13, \mathrm{R}=\mathrm{H}$
$13 \mathrm{a}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{OCH}_{3}$

15

17, $\mathrm{R}=\mathrm{I}$

14, $\mathrm{R}=\mathrm{H}$ $14 \mathrm{a}, \mathrm{R}=\mathrm{Ac}$

$16, \mathrm{R}=\mathrm{H}$
16a, $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OCH}_{3}$

18 17a, $R=H$
b, $R=H$, no $C=C$
min since longer reaction times caused yet another rearrangement to form the five-membered urethane 14 by attack of the hydroxylate anion generated in the reduction on the urethane carbonyl and liberation of the hydroxymethyl group. The use of 2-propanol as a solvent yielded 14 even after 11 min , presumably due to its failure to rapidly protonate the hydroxylate anion. In view of this finding methylation of the allylic alcohol with NaH and methyl iodide was out of the question. The alcohol group was therefore protected as the methoxymethyl ether ${ }^{19}$ by
using the hindered base diisopropylethylamine. Reaction of the resulting product 13a (derived from the fastermoving alcohol) with sodium methyl mercaptide led to elimination of $p-\mathrm{TsOH}$ to form in small yield the unsaturated urethane 15 together with less well-defined products possessing a five-membered urethane ring possibly formed by sulfur-oxygen cleavage, followed by rearrangement. This route was therefore abandoned. Borohydride reduction of the cis tosylate $\mathbf{6 b}$ furnished a single allylic alcohol 16. The stereochemistry as shown is rationalized on the basis of steric interactions between the incoming hydride reagent and the bulky cis-oriented tosyloxy group. The unexpected feature concerning this reduction product was revealed in its proton NMR spectrum, which indicated an axial tosyloxy group, whereas in the parent ketone this group was equatorial. This is readily apparent from the coupling constants observed for the C-5 methine proton which are 3.8 and 6.6 Hz . This ring inversion, which must also involve a change in the conformation of the cinnamoyl side chain, is probably the result of some hydrogen-bonding interaction involving the newly formed hydroxyl group. In support of this interpretation may be cited the fact that in the methoxymethyl ether $16 a$ the tosyloxy group again assumes the equatorial position ($J_{\mathrm{H} 5,6}=5.9$ and 10.9 Hz).

Successful reduction of the hydroxyl group of 5 was achieved via the triflate 5c. Both 5 and 6 readily form stable triflates in high yield, ${ }^{20}$ which can be readily purified by TLC. The triflate 5 c afforded the crystalline iodide 17 with sodium iodide in acetone at $25^{\circ} \mathrm{C}$ in 68% yield from 5. According to its proton NMR spectrum the iodide is equatorial and, since it is most likely formed by a single inversion step, is cis with regard to the cinnamoyl group. The iodide was reduced with tributyltin hydride ${ }^{21}$ to the desired deoxyurethane 17a in 68% yield. An attempt to convert the isomeric cis triflate $\mathbf{6 c}$ into the iodide led instead to the olefin 18 presumably via an intermediate axial iodide. The olefin 18 could be reduced catalytically to the saturated urethane 17 b albeit with concomitant reduction of the styrene double bond. This tetrahydro product was identical with the dihydro derivative prepared by catalytic reduction of $17 a$.

Experimental Section ${ }^{22}$

2-Hydroxyethyl Carbamate. ${ }^{8}$ To a solution of $17.6 \mathrm{~g}(0.2 \mathrm{~mol})$ of ethylene carbonate in 5 mL of water was added at $0^{\circ} \mathrm{C} 30 \mathrm{~mL}$ of concentrated $\mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}$ (1:1) with stirring. The reaction mixture was maintained at $0^{\circ} \mathrm{C}$ for 4 h and then allowed to stir at $25^{\circ} \mathrm{C}$ overnight. The solvent was removed in vacuo to leave $21 \mathrm{~g}(100 \%)$ of colorless oil. Crystals formed on long standing at $25^{\circ} \mathrm{C}: \mathrm{mp} 38-41^{\circ} \mathrm{C}$; NMR (60 MHz) $\delta 6.05$ (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $4.15\left(\mathrm{t}, 2 \mathrm{H}, J=5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 4.0-4.3(1 \mathrm{H}, \mathrm{OH}), 3.75(\mathrm{t}$,

[^4]$2 \mathrm{H}, J=5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$); IR (KBr) $3400-3500\left(\mathrm{OH}, \mathrm{NH}_{2}\right)$, 1725-1740, 1610 (urethane $\mathrm{C}=0$) cm^{-1}.
2-Acetoxyethyl Carbamate. ${ }^{23}$ To a solution of $21 \mathrm{~g}(0.2 \mathrm{~mol})$ of 2-hydroxyethyl carbamate in 40 mL of THF cooled to $-78^{\circ} \mathrm{C}$ was added with stirring a solution of 20 mL of acetyl chloride in 30 mL of THF which was also cooled to $-78^{\circ} \mathrm{C}$. The acetyl chloride solution was added in $1-\mathrm{mL}$ portions over a 2 -h period. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for an additional 3 h , then warmed to $0^{\circ} \mathrm{C}$ for 3 h , and stirred at $25^{\circ} \mathrm{C}$ overnight. The solvent and the excess acetyl chloride were distilled off under water aspirator pressure and the residue distilled under vacuum. The portion distilling at $135-139^{\circ} \mathrm{C}(4 \mathrm{~mm})$ was collected to give $25.4 \mathrm{~g}(86.2 \%)$ of colorless crystals: mp $40-42^{\circ} \mathrm{C}$; NMR (60 MHz) $\delta 5.58$ (br s, $2 \mathrm{H}, \mathrm{NH}_{2}$), $4.28\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$), $2.08(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CO}_{2}$); IR (KBr) $1720-1755$ (ester and urethane $\mathrm{C}=0$), 1610 (urethane) cm^{-1}.

Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{4}: \mathrm{C}, 40.81 ; \mathrm{H}, 6.17 ; \mathrm{N}, 9.52$. Found: C, 41.05 ; H, 6.12; N, 9.80.

Condensation of Styrylglyoxal with 2-Acetoxyethyl Carbamate. 2-Acetoxyethyl \mathbf{N}-(1-Hydroxy-2-oxo-4-phenyl-3-butenyl) carbamate (3). To a solution of 3.5 g (22 mmol) of styrylglyoxal in 20 mL of ether was added 3.3 g (22 mmol) of 2 -acetoxyethyl carbamate in 5 mL of CHCl_{3}. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ overnight. On removal of the solvent, a white precipitate formed which was filtered and washed with ether. The yellow solution was concentrated and allowed to stand at $0^{\circ} \mathrm{C}$, when additional precipitation occurred. The process was repeated until $6.5 \mathrm{~g}(96.3 \%)$ of 3 was collected as a white solid: mp 84-86 ${ }^{\circ} \mathrm{C}$ after one recrystallization from ether; NMR $\delta 7.82$ (d, 1 H , $J=16 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 7.69(\mathrm{~d}, 2 \mathrm{H}, J=6 \mathrm{~Hz}$, ortho Hs of Ph), 7.42 (m, 3 H, meta and para Hs of Ph), $7.06(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}$, $\mathrm{PhCH}=\mathrm{CH}$), 6.49 (br d, $1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{CHNH}), 5.80(\mathrm{br} \mathrm{d}, 1$ $\mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{CHNH}$), 5.03 (br s, $1 \mathrm{H}, \mathrm{OH}$), 4.32 (m, 4 H , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAc}$), 2.06 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$); IR (KBr) $3350-3400(\mathrm{OH}$, NH), 1735 (acetate $\mathrm{C}=0$), 1690 (urethane $\mathrm{C}=0$), $1600(\mathrm{C}=\mathrm{C}$) cm^{-1}; mass spectrum, $m / e 176\left(2.6 \%, \mathrm{M}^{+}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}\right), 131(86 \%$, $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}$), $103(37 \%), 87\left(66 \%, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAc}\right), 77(27 \%), 43(100 \%$, $\mathrm{CH}_{3} \mathrm{CO}$).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{6} \mathrm{~N}: \mathrm{C}, 58.63 ; \mathrm{H}, 5.54 ; \mathrm{N}, 4.56$. Found: C, 58.35 ; H, 5.61 ; N, 4.29 .

2-Acetoxyethyl \boldsymbol{N}-(1-Methoxy-2-oxo-4-phenyl-3(E)-butenyl) carbamate (3a). A solution of 80 mg (0.26 mmol) of 2acetoxyethyl N -(1-hydroxy-2-oxo-4-phenyl-3(E)-butenyl)carbamate (3) in 0.5 mL of methanol was added to 2.5 mL of boiling methanol containing 0.01 mL of $10 \% \mathrm{HCl}$. The reaction mixture was refluxed for 1 min and the solvent removed in vacuo. After purification by TLC (CHCl_{3}), 75 mg (90%) of 3 a was obtained as a white solid: mp $59-60^{\circ} \mathrm{C}$; NMR $\delta 7.81(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}$, $\mathrm{PhCH}=\mathrm{CH}), 7.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.43(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.00(\mathrm{~d}, 1 \mathrm{H}$, $J=16 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 6.13(\mathrm{brd}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{CHNH}), 5.63$ (br d, $1 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{CHNH}$), 4.34 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAc}$), 3.50 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right.$); IR (KBr) $3400(\mathrm{NH}), 1750$ (acetate $\mathrm{C}=0$), 1710 (urethane $\mathrm{C}=$), $1615\left(\mathrm{C}=\mathrm{C}\right.$) cm^{-1}; mass spectrum, $m / e 190\left(26 \%, \mathrm{M}^{+}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}\right), 131\left(22 \%, \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}\right), 103$ (20%), 87 (100%), 77 (13%), 43 (50%).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{~N}: \mathrm{C}, 59.81 ; \mathrm{H}, 5.92 ; \mathrm{N}, 4.36$. Found: C, 60.06 ; H, $5.84 ;$ N, 4.21 .

2-Acetoxyethyl \boldsymbol{N}-(1-Methoxy-2-oxo-4-phenyl-3(E)-bute-nyl)- N -methylcarbamate (4a). To a mixture of 742 mg (2 equiv) of $\mathrm{Ag}_{2} \mathrm{O}$ and 840 mg (4 equiv) of $\mathrm{CH}_{3} \mathrm{I}$ in 4 mL of dry DMF was added a solution of 460 mg (1.4 mmol) of 2 -acetoxyethyl N-(1-methoxy-2-oxo-4-phenyl-3(E)-butenyl)carbamate (3a) in 2 mL of dry DMF. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 16 h and poured into 80 mL of CHCl_{3}, and the grey precipitate was filtered and washed with CHCl_{3}. The CHCl_{3} solution was washed with $\mathrm{H}_{2} \mathrm{O}(10 \times 50 \mathrm{~mL})$ and brine (30 mL) and dried over anhydrous MgSO_{4}. After purification by TLC ($1: 3 \mathrm{EtOAc} / \mathrm{CHCl}_{3}$), $432 \mathrm{mg}(90 \%)$ of 4 a was obtained as a yellow oil: NMR $\delta 7.77$ (d, $1 \mathrm{H}, J=16 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}$), $7.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.40(\mathrm{~m}, 3$ $\mathrm{H}, \mathrm{Ph}), 7.06$ (1), ${ }^{24} 7.01$ (5) ($2 \mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}$), 5.90 (5), 5.65 (1) ($2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{CHNCH}_{3}$), $4.44-4.27$ (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAc}$), 3.45 (5), 3.43 (1) ($2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.78 (1), 2.75 (5) ($2 \mathrm{~s}, 3 \mathrm{H}$,
(23) Prepared by Dr. W. J. Elliott.
(24) These numbers indicate the ratio of the respective signals due to rotational isomerism.
NCH_{3}), 2.06 (5), 2.03 (1) ($2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$); IR (neat) 1750 (acetate $\mathrm{C}=0$), 1705 (urethane $\mathrm{C}=0$), $1610\left(\mathrm{C}=\mathrm{C}\right.$) cm^{-1}; mass spectrum, $m / e 204\left(1.5 \%, \mathrm{M}^{+}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}\right), 131\left(9 \%, \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}\right), 103$ (9%), 87 (100%), 77 (10%), $43(52 \%$).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{6} \mathrm{~N}: \mathrm{C}, 60.90 ; \mathrm{H}, 6.27 ; \mathrm{N}, 4.11$. Fcund: C, 60.97; H, 6.18; N, 4.18.

2-Hydroxyethyl \boldsymbol{N}-(1-Methoxy-2-oxo-4-phenyl-3(E)-bu-tenyl)- \mathbf{N}-methylcarbamate (4b). To a solution of 133 mg (0.4 mmol) of 2-acetoxyethyl N-(1-methoxy-2-oxo-4-phenyl-3(E)-bu-tenyl)- N-methylcarbamate (4a) in 2 mL of methanol was added 0.5 mL of $5 \% \mathrm{KOH}$ in MeOH . The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 min . The mixture was neutralized with $10 \% \mathrm{HCl}$, the solvent removed, the residue taken up in 5 mL of $\mathrm{H}_{2} \mathrm{O}$, and the solution extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The extracts were washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$ and dried over anhydrous MgSO_{4}. The solvent was removed, and after purification by TLC ($1: 1 \mathrm{EtOAc} / \mathrm{CHCl}_{3}$), $106 \mathrm{mg}(91 \%)$ of $\mathbf{4 b}$ was obtained as a yellow oil: NMR $\delta 7.78(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}$, $\mathrm{PhCH}=\mathrm{CH}), 7.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 7.12,7.12$ (2 2 $\mathrm{d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 5.91,5.65\left(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{CHNCH}_{3}\right)$, 4.50-4.22 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $3.83-3.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)$, 3.46, 3.27 ($2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.82, $2.80\left(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$); IR (neat) $3500(\mathrm{OH}), 1710$ (urethane $\mathrm{C}=0$), $1610(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; mass spectrum, $m / e 162\left(100 \%, \mathrm{M}^{+}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}\right), 131\left(10 \%, \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}\right), 103$ (14%), 77 (16%), $74(63 \%), 45\left(66 \%, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 42$ (93%).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~N}$: C, 61.43; $\mathrm{H}, 6.48$; $\mathrm{N}, 4.78$. Found: C, 61.16; H, 6.59; N, 4.64.

The tosylate $\mathbf{4 c}$ was prepared from $\mathbf{4 b}$ with tosyl chloride in pyridine at $25^{\circ} \mathrm{C}$, yield 80% of oil.

Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ONS}: \mathrm{C}, 59.06 ; \mathrm{H}, 5.89 ; \mathrm{N}, 3.13$. Fcund: C, 59.33; H, 5.86; N, 2.99.

The iodide $\mathbf{4 a}$ was prepared from $\mathbf{4 b}$ with sodium iodide in acetone at $25^{\circ} \mathrm{C}$; yield 85%.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{NI}: \mathrm{C}, 44.67 ; \mathrm{H}, 4.47 ; \mathrm{N}, 3.47 ; \mathrm{I}, 21.51$. Found: C, 46.67; H, 4.90; N, 3.33; I, 26.70.

2-Oxoethyl (1-Methoxy-2-oxo-4-phenyl-3(E)-butenyl)-Nmethylcarbamate (4e). To 6 g (6 equiv) of pyridinium chlorochromate and 2.5 g (6 equiv) of sodium acetate refluxing in 300 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under N_{2} was added $1.32 \mathrm{~g}(4.5 \mathrm{mmol})$ of the alsohol $4 \mathbf{b}$ dissolved in 70 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over a period of 5 min . After addition was complete, the reaction was allowed to reflux for another 5 -min period. Ether (300 mL) was then added and the mixture filtered through a column of Florisil (100 g). The column was eluted first with 1.5 L of ether and then with 1.0 L of ethyl acetate. The resulting solution was concentrated to 300 mL , washed with water ($2 \times 50 \mathrm{~mL}$), and dried over sodium sulfate. The crude product ($\sim 1.0 \mathrm{~g}$), consisting of the aldehyde $4 \mathbf{e}$ plus recovered starting material (4b), was purified on a $75-\mathrm{g}$ silica gel column by using ethyl acetate/hexane 1:1. There was obtained 657 mg of 4 e and 360 mg of $\mathbf{4 b}$: yield 69% based on recovered starting material; NMR $\delta 9.69$ (s, $1 \mathrm{H}, \mathrm{CHO}$), 7.84, 7.81 ($2 \mathrm{~d}, 1$ $\mathrm{H}, J=16 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 7.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.44(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph})$, $7.20,7.03(2 \mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 5.90,5.78(2 \mathrm{~s} \mathrm{~s}, 1$ $\mathrm{H}, \mathrm{CHNCH}_{3}$), 4.87 (s), $4.82,4.79\left(2 \mathrm{~d}, J=16 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}\right.$), 3.54, $3.52\left(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 2.87, $2.83\left(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; \mathrm{IR}$ (neat) 3500 (aldehyde hydrate), 1750 (aldehyde $\mathrm{C}=0$), 1700 (urethane $\mathrm{C}=0), 1610(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; mass spectrum, $m / e 160\left(100 \%, \mathrm{M}^{+}\right.$ $-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}$), $131\left(10 \%, \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}\right), 103(47 \%), 77(20 \%), 74(64 \%)$, 43 (48%), 42 (47%).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~N}: \mathrm{C}, 61.86 ; \mathrm{H}, 5.84 ; \mathrm{N}, 4.81$. Fcund: C, 61.52; H, 5.66; N, 4.90.

Cyclization of 2-Oxoethyl (1-Methoxy-2-oxo-4-phenyl-3-(E)-butenyl)-N-methylcarbamate (4e) with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in Methanol. ($5 R S, 6 S R$)-1-Methyl-3-oxa-5-hydroxy-6-cinnamoyl-6-methoxy-2-piperidinone (5, Trans Isomer), ($5 S R, 6 S R$)-1-Methyl-3-oxa-5-hydroxy-6-cinnamoyl-6-meth-oxy-2-piperidinone (6, Cis Isomer), and ($4 R S, 5 S H$)-1-Methyl-3-oxa-4-hydroxymethyl-5-cinnamoyl-5-methoxy-2pyrrolidinone (7). Analytical Experiment. To the aldehyde $4 \mathrm{e}(19.0 \mathrm{mg}, 0.065 \mathrm{mmol})$ was added 2 mL of $0.005 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 3.5 h and carefully neutralized with $10 \% \mathrm{HCl}$, and the solvent was removed in vacuo. Ethyl acetate was added, the solution washed with bicarbonate (3 mL) and brine (3 mL), and the extract dried with sodium sulfate. The crude product was chromatographed by TLC (2:1 ethyl acetate/hexane). There was isolated 7.8 mg of $5(50 \%), 3.4$
mg of $6(22 \%), 1.4 \mathrm{mg}$ of $7(9 \%)$, and 3.0 mg of $\mathbf{4 e}(19 \%)$.
Preparative Experiment Directed at the Isolation of 5 and 6. To the aldehyde $4 \mathrm{e}(704 \mathrm{mg}, 2.42 \mathrm{mmol}$) was added 200 mL of $0.005 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol. The reaction was stirred at 25 ${ }^{\circ} \mathrm{C}$ for 4.0 h , at which time $10 \% \mathrm{HCl}$ was added until pH 7 was reached. The solvent was removed in vacuo, EtOAc added (20 mL), and the solution washed with bicarbonate (5 mL) and brine (5 mL) and dried with sodium sulfate. The crude product was purified on a high-pressure LC column packed with 100 g of silica gel. Elution with ethyl acetate/hexane (1:4) produced some of the five-membered urethane 7. The major product 5 (279 mg , 40%) was eluted with 1700 mL of ethyl acetate-hexane (1:2), followed in the next 450 mL by mixed products. The cis isomer 6 ($99.6 \mathrm{mg}, 14 \%$) was eluted with ethyl acetate-hexane ($1: 1$).

Preparative Experiment Directed at the Isolation of 7. A solution of the aldehyde $4 \mathrm{e}(238 \mathrm{mg}, 0.82 \mathrm{mmol})$ in 75 mL of $\mathrm{CH}_{3} \mathrm{OH}$ was added over a 2-h period to a solution of 1.38 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 400 mL of $\mathrm{CH}_{3} \mathrm{OH}(0.02 \mathrm{M})$, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h . The solvent was removed in vacuo, 30 mL of $\mathrm{H}_{2} \mathrm{O}$ added, and the mixture acidified with $10 \% \mathrm{HCl}$ to pH 7.0 . The aqueous solution was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$), and the organic phase washed with brine (20 mL) and dried over sodium sulfate. The crude product was purified on 20 g of silica gel by using ethyl acetate/hexane (2:1). The first 60 mL eluted faster-moving material. The main product 7 was eluted with 330 mL of solvent: total yield $128.5 \mathrm{mg}(55 \%) ; \mathrm{mp} 109-110^{\circ} \mathrm{C}$. The cis isomer 6 could be isolated from subsequent fractions.

Characterization of Products 5, 6, and 7. The trans isomer 5 was recrystallized from $\mathrm{Et}_{2} \mathrm{O}: \mathrm{mp} 85-86.5^{\circ} \mathrm{C}$; NMR $\delta 7.85$ (d, $1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 7.2(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}$, $\mathrm{PhCH}=\mathrm{CH}$), 7.6-7.4 (br, $5 \mathrm{H}, \mathrm{Ph}), 4.31-4.2$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{C}-4$ methylene and C-5 methine), 3.63 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $2.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$); in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N} \delta 4.64$ ($1 \mathrm{H}, \mathrm{dd}, J=5,8 \mathrm{~Hz}, \mathrm{C}-5$ methine), $4.45(2 \mathrm{H}$, $\mathrm{m}, \mathrm{C}-4$ methylene), $3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$; IR 1705 (6 -ring urethane $\mathrm{C}=0$), $1605\left(\mathrm{C}=\mathrm{C}\right.$) cm^{-1}; low-resolution mass spectrum, $m / e 291\left(0.5 \%, \mathrm{M}^{+}\right), 260\left(0.5 \%, \mathrm{M}-\mathrm{OCH}_{3}\right), 160$ ($100 \%, \mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}$), $131\left(1.5 \%, \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}\right.$); high-resolution mass spectrum, m / e calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~N}$ 291.1106, found 291.1123; $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~N} 260.0922$, found $260.0927 ; \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~N} 160.0610$, found $160.0604 ; \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}$ 131.0497, found 131.0506.
The cis Isomer 6 was recrystallized from EtOAc: mp 195-196 ${ }^{\circ} \mathrm{C}$; NMR $\delta 7.6(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{PhCHCH}$), 7.6-7.2 (br, 5 $\mathrm{H}, \mathrm{Ph}), 4.3-4.25(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}-4$ methylene and $\mathrm{C}-5$ methine), 3.44 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.79 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$); in $\mathrm{CD}_{3} \mathrm{OD} \delta 4.42$ (dd, 1 H , $J=6.0,10.5 \mathrm{~Hz}, \mathrm{C}-5$ methine), 4.12 ($\mathrm{m}, 2 \mathrm{H}$, methylene), 3.45 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$); IR 1705 (6 -ring urethane $\mathrm{C}=0$), $1605(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; low resolution mass spectrum, $m / e 291$ $\left(5 \%, \mathrm{M}^{+}\right), 260\left(5 \%, \mathrm{M}-\mathrm{OCH}_{3}\right), 160\left(100 \%, \mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}\right), 131$ ($10 \%, \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}$); high-resolution mass spectrum, $m / e 291.1147$, 260.0924, 160.0611 .

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~N}$: $\mathrm{C}, 61.86 ; \mathrm{H}, 5.84 ; \mathrm{N}, 4.81$. Found: C, 61.58; H, 5.86; N, 5.07.

Rearrangement Product 7: NMR $\delta 7.68-7.25$ (br, $5 \mathrm{H}, \mathrm{Ph}$), $6.91(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 4.92(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}$, C-4 methine), $4.41(\mathrm{dd}, 1 \mathrm{H}, J=4.5,10.5 \mathrm{~Hz}$, methylene proton), 4.05 (d, $1 \mathrm{H}, J=10.5 \mathrm{~Hz}$, methylene proton), 3.35 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.76 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$); IR $3400(\mathrm{OH}), 1760$ (5 -ring urethane $\mathrm{C}=0$), 1700 (keto $\mathrm{C}=\mathrm{O}$), $1610(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$ (the keto band at $1700 \mathrm{~cm}^{-1}$ is not present in CDCl_{3} (acidic)); mass spectrum, $m / e 290(0.7 \%$, M -1), $260\left(1 \%, \mathrm{M}-\mathrm{OCH}_{3}\right.$), 160 ($100 \%, \mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}$), $143(24 \%$, $\left.\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}-\mathrm{OH}\right), 142\left(20 \%, \mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}\right), 131(55 \%$, $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}$).

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{~N}: \mathrm{C}, 61.86 ; \mathrm{H}, 5.84 ; \mathrm{N}, 4.81$. Found: $\mathrm{C}, 61.80 ; \mathrm{H}, 6.02 ; \mathrm{N}, 4.68$.

The acetates were prepared with acetic anhydride in dry pyridine.
(5 RS, $6 S R$)-1-Methyl-3-oxa-5-acetoxy-6-cinnamoyl-6-methoxy-2-piperidinone. Trans Acetate (5a): NMR $\delta 7.75$ (d, $1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}$), 7.6-7.40 (br, $5 \mathrm{H}, \mathrm{Ph}$), 5.25 (dd, $1 \mathrm{H}, J=3.0,6.0 \mathrm{~Hz}, \mathrm{C}-5$ methine), 4.40 (dd, $1 \mathrm{H}, J=3.0,12.0$ $\mathrm{Hz}, \mathrm{C}-4$ methylene), 4.20 (dd, $1 \mathrm{H}, J=6.0,12.0 \mathrm{~Hz}, \mathrm{C}-4$ methylene), 3.55 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.85 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 2.20 ($\mathrm{s}, 3 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$.
($5 S R, 6 S R$)-1-Methyl-3-oxa-5-acetoxy-6-cinnamoyl-6-methoxy-2-piperidinone. Cis Acetate (6a): NMR $\delta 7.95$ (d, $1 \mathrm{H}, J=15 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}$), $7.8-7.40(\mathrm{br}, 5 \mathrm{H}, \mathrm{Ph}), 5.55(\mathrm{dd}$,
$1 \mathrm{H}, J=6.9,10.5 \mathrm{~Hz}, \mathrm{C}-5$ methine), $4.35(\mathrm{t}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}$ C-4 methylene), 4.20 (dd, $1 \mathrm{H}, J=6.0,10.5 \mathrm{~Hz}, \mathrm{C}-4$ methylene), 3.45 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.75 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), 2.0 (s, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$); IR 1760 (acetyl $\mathrm{C}=0$), 1710 (6 -ring urethane $\mathrm{C}=0$), $1605(\mathrm{C}=0$) cm^{-1}; mass spectrum, $m / e 202\left(100 \%, \mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}\right)$.
(4RS,5SR)-1-Methyl-3-oxa-4-(acetoxymethyl)-5-cinnamoyl-5-methoxy-2-pyrrolidinone (7a): $\mathrm{mp} 87-87.5^{\circ} \mathrm{C}$, NMR $\delta 7.80(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 7.64(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph})$, 7.44 (m, 3 H, Ph), 7.33 (d, $1 \mathrm{H}, J=16 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 4.71$ (t $1 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{C}-4$ methine), $4.05,4.16$ ($2 \mathrm{q}, 2 \mathrm{H}, J=6.5,13$ $\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{OAc}$), 3.41 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.82 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 1.97 (s , $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$); IR (neat) 1775 (acetyl $\mathrm{C}=\mathrm{O}$), 1750 (shoulder urethane $\mathrm{C}=0$), 1700 (keto $\mathrm{C}=0$), $1605(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; mass spectrum, $m / e 242\left(9 \%, \mathrm{M}-\mathrm{OCH}_{3}-\mathrm{OAc}\right), 202(83 \%, \mathrm{M}-$ $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}$), 143 ($38 \%, \mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}-\mathrm{OAc}$), 142 ($100 \%, \mathrm{M}-\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}$ - HOAc), 131 ($60 \%, \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}$), 103 (55%), 43 (100%).

Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{~N}$: C, 61.26; H, 5.71; N, 4.20. Found: C, 61.23; H, 5.74; N, 4.22.
The tosylates were prepared with tosyl chloride and dry pyridine at $25^{\circ} \mathrm{C}$.
Trans Tosylate (5b): NMR $\delta 7.6-7.4$ (br, $9 \mathrm{H}, \mathrm{Ph}$), 4.88 (dd, $1 \mathrm{H}, J=3.9,7.3 \mathrm{~Hz}$ C-5 methine), 4.35 (dd, $1 \mathrm{H}, J=3.9,11.6$ $\mathrm{Hz}, \mathrm{C}-4$ methylene), 4.20 (dd, $1 \mathrm{H}, J=7.3,11.6 \mathrm{~Hz}, \mathrm{C}-4$ meth ylene), 3.56 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 2.28 (s, 3 H PhCH_{3}); IR 1715 (6 -ring urethane $\mathrm{C}=0$), $1600(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$

Cis Tosylate (6b): NMR $\delta 7.8-7.40$ (br, $9 \mathrm{H}, \mathrm{Ph}$), 5.12 (dd, $1 \mathrm{H}, J=5.3,10.5 \mathrm{~Hz}, \mathrm{C}-5$ methine), $4.37(\mathrm{t}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}$, C-5 methylene), 4.10 (dd, $1 \mathrm{H}, J=5.5,10.5 \mathrm{~Hz}$, C-4 methylene) $3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right)$,

Rearranged Tosylate (7c): NMR $\delta 7.97-7.45$ (br, $9 \mathrm{H}, \mathrm{Ph}$, $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$), $7.85(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 7.46(\mathrm{~d}, 1 \mathrm{H}$, $J=16.0 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}$), $4.83(\mathrm{t}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{C}-4$ methine), 4.10 (dd, $1 \mathrm{H}, J=6.5,12 \mathrm{~Hz}$, methylene), 3.97 (dd, $1 \mathrm{H}, J=6.5$, 12 Hz , methylene), 3.43 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $2.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.43$ (s, $3 \mathrm{H}, \mathrm{PhCH}_{3}$); IR 1780 (5 -ring urethane $\mathrm{C}=0$), $1600(\mathrm{C}=\mathrm{C}$) cm^{-1}; mass spectrum, $m / e 172(40 \%, \mathrm{TsOH}), 155(9 \%, \mathrm{Ts}), 131$ ($13 \%, \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}$).
Rearranged Mesylate (7b): NMR $\delta 7.6-7.35$ (br, $5 \mathrm{H}, \mathrm{Ph}$), $7.80(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 7.30(\mathrm{~d}, 1 \mathrm{H}, J=16 \mathrm{~Hz}$, $\mathrm{PhCH}=\mathrm{CH}), 4.73(\mathrm{t}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}, \mathrm{C}-4$ methine $), 4.23-4.08$ (dd, $2 \mathrm{H}, J=6.5 \mathrm{~Hz}$, methylene), 3.38 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.94 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{SO}_{2}$), 2.76 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$); IR 1760 (urethane $\mathrm{C}=0$), 1600 ($\mathrm{C}=\mathrm{C}$) cm^{-1}; mass spectrum, $m / e 273$ (30%, M - HOMs), 242 $\left(38 \%, \mathrm{M}-\mathrm{OCH}_{3}-\mathrm{OMs}\right), 238\left(10 \%, \mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}\right), 142(32 \%), 131$ ($100 \%, \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}$), 103 (53%), 96 ($52 \%, \mathrm{HOMs}$), 79 ($55 \%, \mathrm{CH}_{3} \mathrm{SO}_{2}$), 77 (58%), 45 (56%).

Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{7} \mathrm{NS}: \mathrm{C}, 52.03 ; \mathrm{H}, 5.15 ; \mathrm{N}, 3.79$. Found: C, 50.82; H, 5.43; N, 3.49

The triflates were prepared as follows:
Trans Triflate (5c). To the trans alcohol $5(17.0 \mathrm{mg}, 0.058$ mmol) in 0.5 mL of methylene chloride cooled to $-70^{\circ} \mathrm{C}$ was added diisopropylethylamine ($0.052 \mathrm{~mL}, 0.29 \mathrm{mmol}$), followed by trifluoromethanesulfonic anhydride ($0.040 \mathrm{~mL}, 0.234 \mathrm{mmol}$). The mixture was stirred at $-70^{\circ} \mathrm{C}$ for 0.75 h . The cold solution was rapidly added to saturated bicarbonate (3 mL), and the mixture extracted with EtOAc (15 mL), washed with brine (3 mL), and dried over sodium sulfate. The solution was concentrated almost to dryness and passed through a short silica gel column with 1:1 ethyl acetate/hexane. The crude product was purified by TLC ($1: 1$ ethyl acetate'hexane): yield $14.0 \mathrm{mg}(57 \%$); NMR $\delta 7.88$ (d , $1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}$), 7.6-7.4 (br, $6 \mathrm{H}, \mathrm{Ph}+$ vinyl proton), 5.16 (t, $1 \mathrm{H}, J=3.2 \mathrm{~Hz}$, C-5 methine), 4.52 (dd, $1 \mathrm{H}, J$ $=2.6,12.7 \mathrm{~Hz}, \mathrm{C}-4$ methylene), 4.38 (dd, $1 \mathrm{H}, J=4.1,12.9 \mathrm{~Hz}$, $\mathrm{C}-4$ methylene), 3.60 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.87 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$).

Cis Triflate (6c): NMR $\delta 7.90$ (d, $1 \mathrm{H}, J=15.0 \mathrm{~Hz}$ $\mathrm{PhCH}=\mathrm{CH}$), 7.6-7.40 (br, $5 \mathrm{H}, \mathrm{Ph}$), $5.38(\mathrm{dd}, 1 \mathrm{H}, J=5.4,10.8$ $\mathrm{Hz}, \mathrm{C}-5$ methine), 4.66 ($\mathrm{t}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{C}-4$ methylene), 4.36 (dd, $1 \mathrm{H}, J=5.4,10.5 \mathrm{~Hz}, \mathrm{C}-4$ methylene), 3.54 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$); IR 1710 (urethane $\mathrm{C}=0$), $1415\left(\mathrm{RSO}_{2} \mathrm{OR}\right.$) cm^{-1}
(4RS,5SR)-1-Methyl-3-oxa-4[[(tetrahydropyranyl)oxy]-methyl]-5-cinnamoyl-5-methyl-2-pyrrolidinone (7e). To a solution of the rearranged keto alcohol $7(58.1 \mathrm{mg}, 0.199 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 0.9 mL of dihydropyran (50 equiv), followed by a solution of 5 mg (0.1 equiv) of pyridinium p toluenesulfonate in 0.3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was stirred
at $25^{\circ} \mathrm{C}$ for 18 h and concentrated, and enough ether was added to cause a white precipitate to form. The mixture was washed twice with half-statuated brine and dried over sodium sulfate The crude product was purified on 10 g of silica gel (1:1 ethyl acetate/hexane) to yield $61.5 \mathrm{mg}(82 \%)$ of 7 e : NMR $\delta 7.6-7.25$ (br, $5 \mathrm{H}, \mathrm{Ph}$), $7.60(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}$), $7.20(\mathrm{~d}$, $1 \mathrm{H}, J=16.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 4.70(\mathrm{dd}, J=6.0,9.0 \mathrm{~Hz}, \mathrm{C}-4$ methine), 4.35 (br s, $1 \mathrm{H}, \mathrm{THP}$ acetal proton), $3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 2.75 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$).

In addition to 7 e there was isolated an isomeric product 7 h (16.9 mg), which with $0.01 \mathrm{M} p-\mathrm{Ts} \mathrm{OH}$ in methanol was converted into the bicyclic ketal 7g: NMR $\delta 7.5-7.20$ (br, $5 \mathrm{H}, \mathrm{Ph}$), 6.90 (d, $1 \mathrm{H}, J=16.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}$), $6.05(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}$ $\mathrm{PhCH}=\mathrm{CH}$), 5.95 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{C}-4$ methine), 4.15 ($\mathrm{m}, 2 \mathrm{H}$, methylene), 3.35 (s, 3 H , allylic OCH_{3}), 3.30 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCOCH}_{3}$), 2.80 ($\mathrm{s}, 3 \mathrm{H}$ NCH_{3}); mass spectrum, $m / e 305\left(10 \%, \mathrm{M}^{+}\right), 290\left(40 \%, \mathrm{M}-\mathrm{CH}_{3}\right)$, $274\left(10 \%, \mathrm{M}-\mathrm{OCH}_{3}\right.$), 143 ($100 \%, \mathrm{M}-\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}$).
(4RS,5RS)-1-Methyl-3-oxa-4-[[(tetrahydropyranyl)oxy]-methyl]-5-(1'-hydroxycinnamyl)-5-methoxy-2-pyrolidinone (8). To the THP ketone $7 \mathrm{e}(61.7 \mathrm{mg}, 0.165 \mathrm{mmol})$ in 1 mL of $\mathrm{CH}_{3} \mathrm{OH}$ was added $\mathrm{NaBH}_{4}\left(18.9 \mathrm{mg}, 3\right.$ equiv) at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , concentrated to a thick paste, EtOAc (15 mL) added, and the organic phase washed with water $(5 \mathrm{~mL})$ and brine (5 mL). The solution was then dried over sodium sulfate. The crude product showed a single spot on TLC ($2: 1$ ethyl acetate/hexane); yield $61.5 \mathrm{mg}(98.8 \%)$. It was used in the next step without further purification: NMR $\delta 7.4-7.10$ (br, $5 \mathrm{H}, \mathrm{Ph}$), $6.80(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 6.20(\mathrm{dd}, 1 \mathrm{H}, J=16.5$, $6 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}$), $4.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}-4$ methine), $4.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, THP acetal proton), $4.20-3.35$ ($\mathrm{m}, 3 \mathrm{H}$, allylic +2 THP protons), 3.30 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.98 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 1.9-1.40 (m, $6 \mathrm{H}, \mathrm{THP}$ methylenes); IR $3600-3300$ (br, OH), 1760 (urethane $\mathrm{C}=0$) cm^{-1}; mass spectrum, $m / e 345$ ($10 \%, \mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}$), 244 ($25 \%, \mathrm{M}-$ $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}$).
(4RS,5RS)-1-Methyl-3-oxa-4-[[(tetrahydropyranyl)oxy]-methyl]-5-(1'-methoxycinnamyl)-5-methoxy-2-pyrrolidinone (8 a). To the THP alcohol $8(37.7 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 1.5 mL of DME at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(8.65 \mathrm{mg}, 3.5$ equiv) as a 50% oil dispersion. After the mixture was stirred for 0.5 h at $0^{\circ} \mathrm{C}, 0.065$ mL of $\mathrm{CH}_{3} \mathrm{I}$ (10 equiv) was added and stirring continued for 1 h at $0^{\circ} \mathrm{C}$. The solution was then warmed to $25^{\circ} \mathrm{C}$ for 3 h . After the solution was cooled to $0^{\circ} \mathrm{C}$, water was added to decompose excess NaH . The mixture was extracted with EtOAc (15 mL) and the extract washed with brine (5 mL) and dried over sodium sulfate. The crude product was not purified at this stage, but taken on to the next step as a mixture of isomers 8a. TLC using 2:1 EtOAc/hexane showed two major spots; yield 39.6 mg . The slower-moving isomer A was separated from B to determine their spectra: NMR (isomer A) $\delta 7.6-7.40(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.50(\mathrm{~d}, 1 \mathrm{H}$ $J=16.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 6.35(\mathrm{dd}, 1 \mathrm{H}, J=16.5,7.5 \mathrm{~Hz}$, $\mathrm{PhCH}=\mathrm{CH}), 6.75-6.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{THP}$ acetal proton, C-4 methine), $3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CHOCH}_{3}\right.$), $3.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right.$), 2.80 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 1.7-1.4 (m, 6 H , THP methylenes); (isomer B) $\delta 7.6-7.30(\mathrm{~m}, 5$ $\mathrm{H}, \mathrm{Ph}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}$), 6.25 (dd, 1 H , $J=16.5,7.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 4.7-4.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{THP}$ acetal proton, C-4 methine), 3.40 (s, $3 \mathrm{H}, \mathrm{CHOCH})_{3}$), 3.22 (s, 3 H , COCH_{3}), 2.95 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), 1.9-1.50 (m, 6 H , THP methylenes).
(4RS,5RS)-1-Methyl-3-oxa-4-(hydroxymethyl)-5-(1'-methoxycinnamyl)-5-methoxy-2-pyrrolidinone (9). A solution of the THP methyl ether $8 \mathrm{a}(32.8 \mathrm{mg}, 0.084 \mathrm{mmol})$ in 3 mL of $0.001 \mathrm{M} p-\mathrm{TsOH}$ in methanol was stirred at $25^{\circ} \mathrm{C}$ for 24 h . Then 1 mL of saturated bicarbonate was rapidly added to produce a copious precipitate which dissolved upon addition of 1 mL of water. The mixture was extracted with EtOAc (15 mL) and the extract washed with brine (5 mL) and dried over sodium sulfate. The crude product was separated into its components by TLC ($2: 1 \mathrm{EtOAc} /$ hexane) to afford 10.1 mg of slower-moving isomer A and 8.1 mg of isomer B; total yield 71% : NMR (isomer A) δ $7.5-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}$), 6.00 (dd, $1 \mathrm{H}, J=16.5,7.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}$), $4.60(\mathrm{t}, 1 \mathrm{H}, J=$ $6 \mathrm{~Hz}, \mathrm{C}-4$ methine), 4.10 (d, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CHOCH} 3$), $4.05-3.90$ ($\mathrm{m}, 2 \mathrm{H}, J=9,6 \mathrm{~Hz}$, methylene), 3.45 (s, $3 \mathrm{H}, \mathrm{CHOCH}_{3}$), 3.30 $\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}$), 2.90 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$); (isomer B) $\delta 7.5-7.30(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ph}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 6.10(\mathrm{dd}, 1 \mathrm{H}$, $J=16.5,7.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 4.65(\mathrm{dd}, 1 \mathrm{H}, J=7.5,4.5 \mathrm{~Hz}, \mathrm{C}-4$ methine), 3.95 (d, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CHOCH}_{3}$), $3.95-3.80(\mathrm{~m}, 2$
$\mathrm{H}, J=7.5,4.5 \mathrm{~Hz}$, methylene), 3.38 (s, $3 \mathrm{H}, \mathrm{CHOCH}_{3}$), 3.23 (s , $3 \mathrm{H}, \mathrm{COCH}_{3}$), $2.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$. Double irradiation experiment (isomer B): Irradiate dd at $\delta 6.10$, d at $\delta 3.95$ becomes s; irracliate m at $\delta 3.95-3.80$, dd at $\delta 4.65$ becomes s, dd at $\delta 6.10$ becomes d. IR (isomer B) $1760 \mathrm{~cm}^{-1}$ (urethane); high-resolution raass spectrum, m / e (isomer B) calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~N} 160.0610$, found $160.0623(100 \%)$; calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}$ 147.0810, found 147.0783 (25%).
(4RS,5RS)-1-Methyl-3-oxa-4-(tosyloxymethyl)-5-(1'-methoxycinnamyl)-5-methoxy-2-pyrrolidinone (9a). Tosyl chloride ($72.2 \mathrm{mg}, 10$ equiv) in 0.6 mL of dry pyridine was aclded to the alcohol methyl ether 9 (isomer A, $11.4 \mathrm{mg}, 0.037 \mathrm{mmol}$), and the solution stirred for 20 h at $25^{\circ} \mathrm{C}$. The solution, which turned from yellow to brown overnight, was cooled to $0^{\circ} \mathrm{C}$, and upon addition of water (0.5 mL), stirred at $0^{\circ} \mathrm{C}$ for an additional $30 \mathrm{~min} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added and the extract washed with $10 \% \mathrm{HCl}(2 \times 5 \mathrm{~mL})$ and saturated bicarbonate (5 mL) and then dried over sodium sulfate. The crude product showed a single spot on TLC (2:1 ethyl acetate/hexane) and no further purification was necessary: yield 18.3 mg (100%); NMR (isomer A) $\delta 7.5-7.30$ (br, $9 \mathrm{H}, \mathrm{Ph}$), 6.7 (d, $1 \mathrm{H}, J=16.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}$), 5.95 (dd, $1 \mathrm{H}, J=16.5,7.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 4.70(\mathrm{dd}, 1 \mathrm{H}, J=9,3 \mathrm{~Hz}$, C-4 methine), 4.60 (dd, $1 \mathrm{H}, J=12,3 \mathrm{~Hz}$, methylene), 4.25 (dd, $1 \mathrm{H}, J=12,9 \mathrm{~Hz}$, methylene), $3.95\left(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{CHOCH}_{3}\right)$, 3.32 ($\mathbf{s}, 3 \mathrm{H}, \mathrm{CHOCH}_{3}$), 3.18 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}$), $2.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$), 2.41 (s, $3 \mathrm{H}, \mathrm{PhCH}_{3}$).

The same procedure was applied to isomer B. The NMR spectrum of the resulting tosylate showed only slight differences.
(4SR,5RS)-1-Methyl-3-oxa-4-[(methylthio)methyl]-5-(1^{\prime} -methoxycinnamyl)-5-methoxy-2-pyrrolidinone (9b). To a solution of $9 \mathbf{a}$ (from isomer A, $62.1 \mathrm{mg}, 0.135 \mathrm{mmol}$) in 3 mL of DMF was added at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere 0.31 mL (5 equiv) of $\mathrm{CH}_{3} \mathrm{SNa}$ in $\mathrm{EtOH}(2.15 \mathrm{M})$ and the solution was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 0.5 h . Stirring was continued for 3 h at $25^{\circ} \mathrm{C}$, after which $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added, the resulting mixture washed with water (5 mL) and brine (5 mL), and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract dried over sodium sulfate. High vacuum was used to remove traces of DMF. The crude product was purified by TLC (1:1 EtOAc/hexane) by using three developments of the plate. Two related compounds were isolated. The desired slower-moving product 9 b amounted to 23.8 mg : NMR $\delta 7.5-7.30(\mathrm{br}, 5 \mathrm{H}, \mathrm{Ph}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=16.5$ $\mathrm{Hz}, \mathrm{PhCH}=\mathrm{CH}), 6.05(\mathrm{dd}, 1 \mathrm{H}, J=16.5,7.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH})$, 4.70 (dd, $1 \mathrm{H}, J=9.0,3.0 \mathrm{~Hz}, \mathrm{C}-4$ methine), $4.00(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}, \mathrm{CHOCH} 3$), 3.41 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CHOCH}_{3}$), 3.31 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}$), 3.05 (dd, $1 \mathrm{H}, J=15.0,3.0 \mathrm{~Hz}$, methylene), $2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right.$); IR 1760 (urethane $\mathrm{C}=0$) cm^{-1}; low-resolution mass spectrum, m / e $306\left(5 \%, \mathrm{M}-\mathrm{OCH}_{3}\right.$), $305\left(6 \%, \mathrm{M}-\mathrm{CH}_{3} \mathrm{OH}\right), 190(100 \%, \mathrm{M}-$ $\left.\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}\right), 147\left(38 \%, \mathrm{M}-\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N} \mathrm{~S}\right.$); high-resolution mass spectrum, m / e calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{NS} 305.1086$, found 305.1097 (43.2%); calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{NS} 190.0537$, found 190.0548 (56.3%).
(4RS,5SR)-1-Methyl-3-oxa-4-methyl-5-(1^{\prime}-methoxy-cinnamyl)-5-methoxy-2-pyrrolidinone (9c). A solution of the thioether $9 \mathbf{b}(8.6 \mathrm{mg}, 0.025 \mathrm{mmol})$, derived from isomer A of alcohol 9 in 2 mL of acetone, was added to Raney nickel ${ }^{25}$ (T-1, $\sim 100 \mathrm{mg}$) in 4 mL of acetone which had been deactivated by refluxing for 10 min in acetone. The slurry was stirred vigorously at reflux for 3 h , then filtered through Celite, and washed with 30 mL of EtOH. The crude product was purified by TLC ($1: 1$ EtOAc/benzene) to yield $3.2 \mathrm{mg}(43 \%)^{26}$ of 9 c . In addition, 2.4 $\mathrm{mg}(32 \%)$ of product was obtained in which the double bond had been saturated: NMR $\delta 7.5-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J$ $=16.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 6.05(\mathrm{dd}, 1 \mathrm{H}, J=16.5,7.5 \mathrm{~Hz}$, $\mathrm{PhCH}=\mathrm{CH}), 4.50(\mathrm{q}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{C}-4$ methine $), 3.95(\mathrm{~d}, 1 \mathrm{H}$, $J=7.5 \mathrm{~Hz}, \mathrm{CHOMe}$), $3.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 3.35(\mathrm{~s}, 3 \mathrm{H}$, CHOCH_{3}), $2.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.50(\mathrm{~d}, 3 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{C}-4$ methyl). Double-resonance experiment: Irradiation of doublet at $\delta 1.50$ results in singlet at $\delta 4.50$; conversely irradiation of quartet at 4.50 results in singlet at 1.50 . IR 1750 (urethane) cm^{-1}; highresolution mass spectrum, m / e calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}$ 147.0810, found 147.0811 (36.5%); calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~N} 144.0661$, found 144.0662 (100%); calcd for $\mathrm{C}_{8} \mathrm{H}_{7}$ 103.0548, found 103.0557 (19.8%).
(25) Dominguez, A.; Lopez, I. C.; Franco, R. J. Org. Chem. 1961, 26, 1625.
(26) The ratio of 9 c to its dihydro product improved when the aickel was deactivated for 15 min and the reaction was terminated after 30 min .
(4RS,5RS)-1-Methyl-3-oxa-4-methyl-5-(1'-methoxy cinnamyl)-5-hydroxy-2-pyrrolidinone (11a). A solution of the methoxymethyl compound $9 \mathrm{c}(3.7 \mathrm{mg}, 0.013 \mathrm{mmol})$ in 1 mL of 0.2 N HCl in THF was stirred at $25^{\circ} \mathrm{C}$ for 1.5 h . The mixture was taken up in EtOAc (15 mL), washed with bicarbonate (3 mL) and brine (3 mL), and dried over sodium sulfate. Hemiketal 11a $(3.9 \mathrm{mg})$ was obtained: NMR $\delta 7.6-7.20$ (br, $5 \mathrm{H}, \mathrm{Ph}$), 6.70 (d, $1 \mathrm{H}, J=16 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 5.98(\mathrm{dd}, 1 \mathrm{H}, J=16.0,9.0 \mathrm{~Hz}$, $\mathrm{PhCH}=\mathrm{CH}), 4.50(\mathrm{q}, 1 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{C}-4$ methine $), 3.95(\mathrm{~d}, 1$ $\mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{CHOMe}), 3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 2.90(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), 1.35 (d, $3 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{C}-5$ methyl); IR 1755 (urethane), $3500-3600(\mathrm{OH}) \mathrm{cm}^{-1}$
(4SR,5RS)-1-Methyl-3-oxa-4-formyl-5-(1'-methoxy-cinnamyl)-5-methoxy-2-pyrrolidinone (10). The primary alcohol methyl ether 9 (isomer B, $5.9 \mathrm{mg}, 0.019 \mathrm{mmol}$) in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to pyridinium chlorochromate $(20.0 \mathrm{mg}, 5$ equiv) and sodium acetate ($7.9 \mathrm{mg}, 5$ equiv) in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Addition caused the reaction to turn bright orange as it stirred at $25^{\circ} \mathrm{C}$. After 2 h , ether was added (50 mL) and the mixture was filtered through a short pad of Florisil and Celite: yield 3.1 mg ; NMR $\delta 9.70$ (s, $1 \mathrm{H}, \mathrm{CHO}$), 7.5-7.20 (br, $5 \mathrm{H}, \mathrm{Ph}$), 6.75 (d, $1 \mathrm{H}, J=16 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 6.25(\mathrm{dd}, 1 \mathrm{H}, J=7.5,16 \mathrm{~Hz}$, $\mathrm{PhCH}=\mathrm{CH}), 5.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}-4$ methine $), 4.05(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}$, CHOMe), 3.42 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CHOCH}_{3}$), 3.1 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CHOCH}_{3}$), 2.9 (s , $3 \mathrm{H}, \mathrm{NCH}_{3}$); IR 1760 (urethane) cm^{-1}
(4RS,5RS)-1-Methyl-3-oxa-5-(1',4-epoxymethylen-ocinnamyl)-5-methoxy-2-pyrrolidinone (12). To a solution of the mesylate $7 \mathbf{b}(6.1 \mathrm{mg}, 0.016 \mathrm{mmol})$ in 0.5 mL of THF was added at $0^{\circ} \mathrm{C} 0.05 \mathrm{~mL}$ of $\mathrm{LiEt}_{3} \mathrm{BH}$ in THF (1 M), and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h and then at $25^{\circ} \mathrm{C}$ for 2 h . Water $(0.5$ mL) was added to decompose excess $\mathrm{LiEt}_{3} \mathrm{BH}$, followed by 0.05 mL of $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$ and 0.05 mL of $10 \% \mathrm{NaOH}$, and the mixture was stirred for $30 \mathrm{~min} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added and the extract washed with water (5 mL) and brine (5 mL) and then dried over sodium sulfate. The crude product was purified by TLC (1:1 $\mathrm{EtOAc} /$ hexane) to yield 3.0 mg of the epoxy urethane 12 (66.5%). The product was recrystallized from EtOAc/hexane: mp $123.5-124^{\circ} \mathrm{C}$; NMR $\delta 7.5-7.30(\mathrm{br}, 5 \mathrm{H}, \mathrm{Ph}), 6.80(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 6.10(\mathrm{dd}, 1 \mathrm{H}, J=16.5,7.5 \mathrm{~Hz}, \mathrm{PhCH}=$ $\mathrm{CH}), 4.90(\mathrm{~d}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}, \mathrm{C}-4$ methine), $4.30(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}), 4.20(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}$, methylene), 4.00 (dd, $1 \mathrm{H}, J=4.5,12.0 \mathrm{~Hz}$, methylene), $3.3\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 2.85 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$); IR 1760 (urethane) cm^{-1}; mass spectrum, $m / e 275$ $\left(3 \%, \mathrm{M}^{+}\right), 143\left(100 \%, \mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}\right)$.

Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~N}_{1}$: C, 65.47; H, 6.18; N, 5.09; O, 23.26. Found: C, 64.69; H, 6.46; N, 4.94; O, 23.91.
(5RS,6RS)-1-Methyl-3-oxa-5-tosyloxy-6-(1'-hydroxy-cinnamyl)-6-methoxy-2-piperidinone (13). To a solution of the trans keto tosylate $5 \mathbf{b}$ ($31.0 \mathrm{mg}, 0.07 \mathrm{mmol}$) in 3 mL of methanol at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(27.3 \mathrm{mg})$. The mixture was stirred for 11 min at $0^{\circ} \mathrm{C}$, followed by neutralization with 10% $\mathrm{HCl}(\mathrm{pH} 6)$ and extraction with EtOAc (20 mL). The organic layer was washed with water (3 mL), bicarbonate (3 mL), and brine (3 mL) and dried over sodium sulfate. The crude product was purified by TLC (2:1 EtOAc/hexane). Each of the two possible isomers 13 from the reduction was isolated separately to yield 79% from the keto alcohol 5 . Both isomers showed bands in their IR spectra at $1710 \mathrm{~cm}^{-1}$ characteristic of six-membered ring structures. The faster-moving isomer was characterized by its NMR spectrum: $\delta 7.6^{-7.40(\mathrm{br}, 5 \mathrm{H}, \mathrm{Ph}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=15}$ $\mathrm{Hz}, \mathrm{PhCH}=\mathrm{CH}$), 5.95 (dd, $1 \mathrm{H}, J=4.0,15.0 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH})$, 5.08 (dd, $1 \mathrm{H}, J=3.4,4.6 \mathrm{~Hz}, \mathrm{C}-5$ methine), $4.60(\mathrm{~d}, 1 \mathrm{H}, J=$ $4.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}), 4.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}-4$ methylene), $3.40(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right)$; mass spectrum, $m / e 275$ ($10 \%, \mathrm{M}-\mathrm{TsOH}$), 243 ($90 \%, \mathrm{M}-\mathrm{MeOH}-\mathrm{TsOH}$), 172 (100%, Ts OH).
(5SR, 1^{\prime} RS)-1-Methyl-3-oxa-4 ξ-styryl-5-methoxy-5-(1'-to-syloxy-2'-hydroxyethyl)pyrrolidinone (14). The title compound resulted when the borohydride reduction of $\mathbf{5 b}$ was extended to 30 min or longer. A more suitable procedure is the following: to a solution of the trans keto tosylate $\mathbf{5 b}(6.0 \mathrm{mg})$ in 1.5 mL of 2 -propanol was added at $0^{\circ} \mathrm{C} \mathrm{NaBH}_{4}(6.0 \mathrm{mg})$. The reaction was allowed to proceed for 30 min and worked up as above. The crude product was purified by TLC (2:1 EtOAc/ hexane) to yield 2.5 mg : NMR $\delta 7.8-7.2$ (br, $9 \mathrm{H}, \mathrm{Ph}+\mathrm{OTs}$), 6.85 $(\mathrm{dd}, 1 \mathrm{H}, J=16.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 6.25(\mathrm{dd}, 1 \mathrm{H}, J=16.5,5$
$\mathrm{Hz}, \mathrm{PhCH}=\mathrm{CH}$), $5.70(\mathrm{~d}, 1 \mathrm{H}, J=5 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}), 4.80(\mathrm{t}$, $1 \mathrm{H}, J=4.5 \mathrm{~Hz}, \mathrm{CHOTs}), 4.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.95(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{OH}$), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.45(\mathrm{~s}, 3 \mathrm{H}$, PhCH_{3}); IR 1760 (5-ring urethane) cm^{-1}
Acetate (14a): NMR $\delta 7.8-7.2$ (br, $9 \mathrm{H}, \mathrm{Ph}+\mathrm{OTs}$), 6.90 (d, $1 \mathrm{H}, J=16.5 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 6.20(\mathrm{dd}, 1 \mathrm{H}, J=16.5,6 \mathrm{~Hz}$, $\mathrm{PhCH}=\mathrm{CH}$), $5.21(\mathrm{~d}, 1 \mathrm{H}, J=6 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}), 5.05(\mathrm{dd}, 1$ $\mathrm{H}, J=3,6 \mathrm{~Hz}, \mathrm{CHOTs}$), 4.55 (dd, $1 \mathrm{H}, J=3,12 \mathrm{~Hz}, \mathrm{CHOAc}$), 4.30 (dd, $1 \mathrm{H}, J=6,12 \mathrm{~Hz}, \mathrm{CHOAc}), 3.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.80$ (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), $2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$.
(5RS,6RS)-1-Methyl-3-oxa-5-tosyloxy-6-[1'-[(methoxy)-methoxy]cinnamyl]-6-methoxy-2-piperidinone (13a). To a solution of the trans tosylate alcohol (isomer B, $10.9 \mathrm{mg}, 0.025$ mmol) (13) in 0.25 mL of methylene chloride was added diisopropylethylamine (0.21 mL) and chloromethyl methyl ether (0.1 mL). The mixture was stirred at $25^{\circ} \mathrm{C}$ for 65 h . The solvent was removed, EtOAc added (15 mL), and the mixture washed with $10 \% \mathrm{HCl}(3 \mathrm{~mL})$ and bicarbonate (3 mL). The EtOAc extract was dried over sodium sulfate and evaporated, and the crude product was purified by TLC ($1: 1$ ethyl acetate/hexane): yield 9.6 mg of $13 \mathrm{a}(80 \%$); NMR $\delta 7.6-7.40$ (br, $5 \mathrm{H}, \mathrm{Ph}$), $6.60(\mathrm{~d}, 1$ $\mathrm{H}, J=15.7 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 5.95(\mathrm{dd}, 1 \mathrm{H}, J=5.7,15.9 \mathrm{~Hz}$, $\mathrm{PhCH}=\mathrm{CH}), 5.17(\mathrm{dd}, 1 \mathrm{H}, J=3.3,7.1 \mathrm{~Hz}, \mathrm{C}-5$ methine), 4.58 (d, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{OCHO}_{2}$), $4.43\left(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{O}\right.$), $4.38(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}), 4.25(\mathrm{dd}, 1 \mathrm{H}, J=3.9$, $11.5 \mathrm{~Hz}, \mathrm{C}-4$ methylene), 4.10 (dd, $1 \mathrm{H}, J=7.2,11.7 \mathrm{~Hz}, \mathrm{C}-4$ methylene), 3.38 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}$), 3.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.9 (s , $3 \mathrm{H}, \mathrm{NCH}_{3}$), 2.48 (s, $3 \mathrm{H}, \mathrm{PhCH}_{3}$); IR 1715 (urethane) cm^{-1}.

1-Methyl-3-oxa-6-[1'-[(methoxy)methoxy]cinnamyl]-6-methoxypiperid-4,5-en-2-one (15). To a solution of the trans tosylate methoxymethyl ether (13a) (faster-moving isomer B, 9.6 $\mathrm{mg}, 0.019 \mathrm{mmol}$) in 0.4 mL of DMF was added $\mathrm{CH}_{3} \mathrm{SNa} / \mathrm{DMF}$ ($0.19 \mathrm{mmol}, 0.019 \mathrm{~mL}$), and the resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h . Benzene (15 mL) was then added and the benzene extract washed with water (3 mL) and dried over sodium sulfate. The crude product was purified by TLC ($1: 1 \mathrm{EtOAc} /$ hexane): yield 1.7 mg of olefin 15; NMR $\delta 7.6-7.40(\mathrm{br}, 5 \mathrm{H}, \mathrm{Ph}), 6.80(\mathrm{~d}$, $1 \mathrm{H}, J=6.0 \mathrm{~Hz}, \mathrm{C}-4$ vinyl), 6.7 (d, $1 \mathrm{H}, J=15.0 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}$), $5.95(\mathrm{dd}, 1 \mathrm{H}, J==9.0,15.0 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 5.30(\mathrm{~d}, 1 \mathrm{H}, J=$ $6.0 \mathrm{~Hz}, \mathrm{C}-5$ vinyl), $4.70\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.45(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}$, $\mathrm{CH}=\mathrm{CHCH}$), $3.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 3.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.95$ (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$); IR 1715 (urethane) cm^{-1}; mass spectrum, $m / e 288$ $\left(3 \%, \mathrm{M}-\mathrm{OCH}_{3}\right), 142\left(100 \%, \mathrm{M}-\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2}\right)$.
(5SR,6RS, $1^{\prime} R S$)-1-Methyl-3-oxa-5-tosyloxy-6-(1'-hydroxycinnamyl)-6-methoxy-2-piperidinone (16). The cis keto tosylate $6(22.3 \mathrm{mg}, 0.05 \mathrm{mmol})$ in 2.5 mL of methanol cooled to $0^{\circ} \mathrm{C}$ was reduced with $\mathrm{NaBH}_{4}(24.5 \mathrm{mg}, 13$ equiv) for 8 min as described for the trans isomer $5 \mathbf{b}$ to yield $15.0 \mathrm{mg}(67 \%)$. Only 16, one of the two possible isomers, was produced in the reduction; NMR $\delta 7.5-7.20(\mathrm{br}, 5 \mathrm{H}, \mathrm{Ph}), 6.70(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}$, $\mathrm{PhCH}=\mathrm{CH}), 6.35(\mathrm{dd}, 1 \mathrm{H}, J=5.5,16.0 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 5.04$ (dd, $1 \mathrm{H}, J=3.8,6.6 \mathrm{~Hz}, \mathrm{C}-5$ methine), $4.65(\mathrm{~m}, 1 \mathrm{H}, J=5.3$, $1.1 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CHCH}$), 4.42 (dd, $1 \mathrm{H}, J=6.6,11.6 \mathrm{~Hz}, \mathrm{C}-4$ methylene), 4.25 (dd, $1 \mathrm{H}, J=3.7,11.6 \mathrm{~Hz}$, C-4 methylene), 3.27 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), $2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{PhCH}_{3}\right.$).
($5 S R, 6 R S, 1^{\prime} R S$)-1-Methyl-3-oxa-5-tosyloxy-6-[1'-[(meth-oxy)methoxy]cinnamyl]-6-methoxy-2-piperidinone (16a). The cis tosylate $\mathbf{6 b}$ was converted into the methoxymethyl ether 16 a as described above for the trans tosylate. The crude product was purified by TLC (1:1 EtOAc/hexane): yield 9.4 mg of 16 a (68%); NMR $\delta 7.4-7.10(\mathrm{br}, 5 \mathrm{H}, \mathrm{Ph}), 6.48(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}$, $\mathrm{PhCH}=\mathrm{CH}), 6.20(\mathrm{dd}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}, 16.0 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH})$, $5.04(\mathrm{dd}, 1 \mathrm{H}, J=5.9,10.9 \mathrm{~Hz}, \mathrm{C}-5$ methine), $4.78(\mathrm{t}, 1 \mathrm{H}, J=$ $10.8 \mathrm{~Hz}, \mathrm{C}-4$ methylene), $4.68\left(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{O}\right), 4.50$ (d, $1 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{O}$), 4.39 (d, $1 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{CH}=$ CHCH), 4.25 (dd, $1 \mathrm{H}, J=5.9,10.0 \mathrm{~Hz}, \mathrm{C}-4$ methylene), 3.34 (s , $3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OCH}_{3}$), 3.02 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.92 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 2.30 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{PHCH}_{3}$) ; IR 1700 (urethane) cm^{-1}.
(5SR,6RS)-1-Methyl-3-oxa-5-iodo-6-cinnamoyl-6-meth-oxy-2-piperidinone (17). To a solution of the trans triflate $\mathbf{5 c}$ ($70.3 \mathrm{mg}, 0.166 \mathrm{mmol}$) in 3 mL of acetone was added NaI (98.6 mg). The mixture was stirred at $25^{\circ} \mathrm{C}$ for 18 h , the solvent removed, and EtOAc (15 mL) added. The resulting solution was washed with saturated sodium thiosulfate (3 mL) and half-saturated brine (3 mL) and dried over sodium sulfate. The crude product ($17,80.5 \mathrm{mg}$) solidified on standing. It was recrystallized
from EtOAc/hexane to yield a white crystalline solid, decomposition point $180-182^{\circ} \mathrm{C}$: yield from starting alcohol 738.3 mg (58% for 2 steps); NMR $\delta 7.75$ (d, $1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}$), $7.50(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}, \mathrm{PhCH}=\mathrm{CH}), 7.6-7.4(\mathrm{br}, 5 \mathrm{H}, \mathrm{Ph}), 4.70$ (dd, $1 \mathrm{H}, J=10.7,12.0 \mathrm{~Hz}, \mathrm{C}-4$ methylene), 4.44 (dd, $1 \mathrm{H}, J=$ $5.2,12.0 \mathrm{~Hz}, \mathrm{C}-5$ methine), 4.32 (dd, $1 \mathrm{H}, J=5.2,10.5 \mathrm{~Hz}, \mathrm{C}-4$ methylene), 3.40 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$); IR 1708 (urethane $\mathrm{C}=0$), $1605(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; low-resolution mass spectrum, $m / e 402(35 \%, \mathrm{M}+1), 370\left(20 \%, \mathrm{M}-\mathrm{OCH}_{3}\right), 270(100 \%, \mathrm{M}-$ $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}$), 131 (100%, M - $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{NI}$); high-resolution mass spectrum, m / e calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{NI} 369.9940$, found 369.9957 (2.2%); calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{NI} 269.9628$, found $269.9615(80.5 \%$).

1-Methyl-3-oxa-6-cinnamoyl-6-methoxy-2-piperidinone (17 a). To the cis iodide 17 ($6.2 \mathrm{mg}, 0.015 \mathrm{mmol}$) and azobis(isobutyronitrile) (1.4 mg) was added under $\mathrm{N}_{2} 0.6 \mathrm{~mL}$ of dry benzene (flushed for 20 min with N_{2} to remove oxygen), followed by tri- n-butyltin hydride ($5.0 \mathrm{~mL}, 1.25 \mathrm{mmol}$) (strong IR band at $1805 \mathrm{~cm}^{-1}$ for SnH). The mixture was stirred at $55^{\circ} \mathrm{C}$ for 9 h , the solvent removed, the residue taken up in acetonitrile ${ }^{27}$ (15 $\mathrm{mL})$, and the resulting solution washed with hexane ($2 \times 5 \mathrm{~mL}$). The acetonitrile phase, which contained all of the product free of tin compounds, was evaporated to dryness in vacuo and the residue purified by TLC ($2: 1 \mathrm{EtOAc} /$ hexane) to yield 2.8 mg (68%) of 17 a . Excess tri- n-butyltin hydride caused reduction of the styryl double bond; NMR $\delta 7.75$ (d, $1 \mathrm{H}, J=16 \mathrm{~Hz}$, $\mathrm{PhCH}=\mathrm{CH}$), $7.6-7.40$ (br, $5 \mathrm{H}, \mathrm{Ph}$), 4.21 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{C}-4$ methylene), 2.28 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $2.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$), 2.46 (septet, $1 \mathrm{H}, J=$ $6,9,15 \mathrm{~Hz}, \mathrm{C}-5$ methylene), 1.96 ($\mathrm{dt}, 1 \mathrm{H}, J=3.3,14.8 \mathrm{~Hz}, \mathrm{C}-5$ methylene). Double-irradiation experiment: Irradiation of m at $\delta 4.21$ causes septet at $\delta 2.46$ and dt at $\delta 1.96$ to collapse to $\mathrm{d}(J$ $=15 \mathrm{~Hz}$). Irradiation of septet at $\delta 2.46$ causes dt to collapse to t; IR $1700\left(6\right.$-ring urethane $\mathrm{C}=0$), $1600(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$; high-resolution mass spectrum, m / e calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}\left(\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}\right)$ 244.0973 , found 244.0980 (6.9%); calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~N}$ (M $\left.\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~N}\right) 144.0660$, found $144.0667(100 \%)$.

1-Methyl-3-oxa-6-(1-oxo-3-phenylpropyl)-6-methoxy-2piperidinone (17b). To the olefin $18(2.0 \mathrm{mg}, 0.007 \mathrm{mmol})$ in 2.2 mL of EtOH was added 10.1 mg of $\mathrm{Pd} / \mathrm{C}(10 \%)$. The suspension was vigorously stirred at $25^{\circ} \mathrm{C}$ under an H_{2} atmosphere for 3 h . The suspension was then filtered through Celite and washed with 25 mL of EtOAc. The crude product $17 \mathrm{~b}(1.5 \mathrm{mg})$, although essentially pure, was purified by TLC ($1: 1$ ethyl acetate/hexane): NMR $\delta 7.4-7.2$ (br, $5 \mathrm{H}, \mathrm{Ph}$), 4.00 (m, $2 \mathrm{H}, \mathrm{C}-4$ methylene), $3.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), $3.95\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}\right.$), 2.68 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), 2.27 (septet, $1 \mathrm{H}, J=15.0,10.5,5.4 \mathrm{~Hz}, \mathrm{C}-5$ methylene), 1.55 (dt, $3.2,15.0 \mathrm{~Hz}, \mathrm{C}-5$ methylene); IR 1730 (keto $\mathrm{C}=0$) cm^{-1}.

The NMR and IR spectra of 17 b were identical with those of the product obtained by catalytic reduction of 17 a .

Acknowledgment. This work was supported by NIH Research Career Award AM 21846 to J.F. and NIH research Grant CA 20905 and Pharmacological Sciences Research Traineeship GM 07151 to G.G. Funds provided by NSF (GP 33116), NIH (Cancer Center Grant CA 14999), and the Louis Block Fund to purchase the NMR equipment used in this work are gratefully acknowledged.

Registry No. 3, 73061-95-7; 3a, 73061-96-8; 4a, 73061-97-9; 4b, 73061-98-0; 4c, 73061-99-1; 4d, 73062-00-7; 4e, 73062-01-8; 5, 73062-02-9; 5a, 73062-03-0; 5b, 73062-04-1; 5c, 73062-05-2; 6, 73089-34-6; 6a, 73089-35-7; 6b, 73089-36-8; 6c, 73089-37-9; 7, 73062-06-3; 7a, 73062-07-4; 7b, 73062-08-5; 7c, 73062-09-6; 7e, 73062-10-9; 7g, 73062-11-0; 7h, 73069-76-8; 8, 73062-12-1; 8a, 73062-13-2; 9, isomer A, 73062-14-3; 9, isomer B, 73089-38-0; 9a, isomer A, 73062-15-4; 9a, isomer $\mathrm{B}, 73089-39-1$; 9b, 73062-16-5; 9c, 73062-17-6; 10, 73062-18-7; 11a, 73062-19-8; 12, 73062-20-1; 13, isomer A, 73062-21-2; 13, isomer B, 73089-40-4; 13a, 73089-58-4; 14, 73062-22-3; 14a, 73062-23-4; 15, $73062-24-5$; 16, 73089-41-5; 16a, 73062-25-6; 17, 73062-26-7; 17a, 73062-27-8; 17b, 73062-28-9; 18, 73062-29-0; 2-hydroxyethyl carbamate, 5395-01-7; ethylene carbonate, 96-49-1; 2-acetoxyethyl carbamate, 73062-30-3; styrylglyoxal, 22329-00-6; 1-methyl-3-oxa-4-methyl-5-(1-methoxy-3-phenylpropyl)-5-methoxy-2-pyrrolidinone, 73062-31-4.

[^5]
[^0]: (1) Dedicated to the memory of S. Morris Kupchan whose discovery of novel and interesting natural products has provided innumerable challenges to organic chemists.
 (2) Kupchan, W. M.; Komoda, Y.; Court, W. A.; Thomas, G. J.; Smith, R. M.; Karim, A.; Gilmore, C. J.; Haltiwanger, R. C.; Bryan, R. F. J. Am. Chem. Soc. 1972, 94, 1354.
 (3) Kupchan, S. M.; Komoda, Y.; Branfman, A. R.; Dailey, R. G., Jr.; Zimmerly, V. A. J. Am. Chem. Soc. 1974, 96, 3706.
 (4) Meyers, A. I.; Tomioka, K.; Roland, D. M.; Comins, D. Tetrahedron Lett. 1978, 1375. Foy, J. E.; Ganem, B. Ibid. 1977, 775. Corey, E. J.; Bock, M. G.; Kozikowsky, A. P.; Rama Rao, A. V.; Floyd, D.; Lipshutz, B. Ibid. 1978, 1051. Gotschi, E.; Schneider, F.; Wagner, H.; Bernhauer, K. Helv. Chim. Acta 1977, 60, 1416. Edwards, D. E.; Ho, P. T. Can. J. K. Helv. Chim. Acta
 (5) Corey, E. J.; Weigel, L. O.; Floyd, D.; Bock, M. G. J. Am. Chem. Soc. 1978, $100,2916$.
 (6) Meyers, A. I.; Roland, D. M.; Comins, D. L.; Henning, R.; Fleming, M. P.; Shimizu, K. J. Am. Chem. Soc. 1979, 101, 4132.
 (7) Elliott, W. J.; Fried, J. J. Org. Chem. 1976, 41, 2469.

[^1]: (8) Viard, M. J.; British Patent 689 705, April 1, 1953; Chem. Abstr. 1953, 48, 7055d.
 (9) Miyano, M.; Dorn, C. R.; Mueller, R. A. J. Org. Chem. 1972, 37, 1810.

[^2]: (12) Grieco, P.; Yoshikoshi, A.; Miyashita, N. J. Org. Chem. 1977, 42,

[^3]: (13) Diner, U.; Sweet, F.; Brown, R. Can. J. Chem. 1966, 44, 1591.
 (14) Baker, S. B. Can. J. Chem. 1955, 33, 1102.
 (15) Lin, H.; Hung, H.; Mhette, G.; Weinberg, M. Can. J. Chem. 1978, 56, 1368.
 (16) Krishnamurty; Brown, H. C. J. Org. Chem. 1976, 41, 3064
 (17) The chemical shifts for the methine proton in the alcohols 5 and 6 are not sufficiently resolved in CDCl_{3}. However, 5 and $\mathbf{6}$ show coupling constants similar to those of their acyl derivatives in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ and $\mathrm{CD}_{3} \mathrm{OD}$, respectively.
 (18) Bryan, R. F.; Gilmore, Ch. J.; Haltiwanger, R. C. J. Chem. Soc., Perkin Trans. 2 1973, 897.

[^4]: (19) An attempt to prepare the methyl thiomethyl ether with $\mathrm{Me}_{2} \mathrm{SO}$ and acetic anhydride caused reoxidation to the ketone.
 (20) Vedejs, E.; Engles, D. A.; Mullins, M. J. J. Org. Chem. 1977, 42, 3109.
 (21) Kuivila, H. G. Synthesis 1970, 10, 499.
 (22) Infrared (IR) spectra were recorded on a Perkin-Elmer Model 297 spectrophotometer. Samples were run in solution cells at a concentration of ca. $2 \mathrm{mg} / \mathrm{mL}$ unless otherwise specified. Proton NMR spectra were recorded on a Bruker HX-270 (270 MHz) spectrometer and were determined as solutions in CDCl_{3} with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard. Chemical shifts are reported in δ, coupling constants (J) are reported in hertz; the abbreviations $\mathrm{s}, \mathrm{d}, \mathrm{t}, \mathrm{q}$, and m signify singlet, doublet, triplet, quartet, and multiplet, respectively. Low-resolution mass spectra were determined by using a Finnigan 1015 quadrupole mass spectrometer equipped with VPC, gas, and solid probe inlets; the data were recorded and processed by a Systems Industries Computer Interface System/150 and plotted as bar graphs. High-resolution mass spectra were determined by using an AEI Model MS-9 mass spectrometer. Melting points were determined in capillary tubes and are uncorrected. Thin-layer chromatography was carried out by using silica gel analytical plates from Merck. Microanalyses were performed by Baron Consulting Co., Orange, CT. The terms bicarbonate and brine refer to saturated aqueous solutions of NaHCO_{3} and NaCl respectively.

[^5]: (27) Berge, J. M.; Roberts, S. M. Synthesis 1979, 471.

